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Abstract. Anomaly detection is the process of identifying cases, or groups of 

cases, that are in some way unusual and do not fit the general patterns present in 

the dataset. Numerous algorithms use discretization of numerical data in their 

detection processes. This study investigates the effect of the discretization 

method on the unsupervised detection of each of the six anomaly types 

acknowledged in a recent typology of data anomalies. To this end, experiments 

are conducted with various datasets and SECODA, a general-purpose algorithm 

for unsupervised non-parametric anomaly detection in datasets with numerical 

and categorical attributes. This algorithm employs discretization of continuous 

attributes, exponentially increasing weights and discretization cut points, and a 

pruning heuristic to detect anomalies with an optimal number of iterations. The 

results demonstrate that standard SECODA can detect all six types, but that dif-

ferent discretization methods favor the discovery of certain anomaly types. The 

main findings also hold for other detection techniques using discretization.  

Keywords: Anomaly detection ∙ Outlier detection ∙ Deviants ∙ SECODA ∙ Data 

mining ∙ Typology ∙ Discretization ∙ Binning ∙ Classification ∙ Anomaly types 

1 Introduction 

Anomaly detection (AD) is the process of identifying cases, or groups of cases, that 

are in some way unusual and do not fit the general patterns present in the dataset [1, 2, 

3]. The detection of anomalies, which are often also referred to as outliers, deviants or 

novelties, is a major research topic in the overlapping disciplines of artificial intelli-

gence [4, 5, 6], data mining [7, 8, 9] and statistics [10, 11, 12]. It is not merely of 

interest for academia, however, as it is also of significant value in industrial practice 

nowadays [13, 14, 36]. Anomaly detection can be used for discovering fraud, data 

quality issues, security threats, process and system failures, and deviating data points 

that hamper model training.  

Many techniques for detecting anomalies have been devised throughout the years. 

The field of statistics traditionally focused mainly on parametric methods for discov-

ering univariate outliers in each attribute (variable) separately [cf. 1, 12, 15]. Dis-

tance- and density-based techniques were consequently developed, allowing for non-

parametric multidimensional data mining [16, 17, 18]. Another group of methods 

comprises complex non-parametric models, such as one-class support vector ma-
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chines, ensembles and various subspace methods [19, 20, 21]. Other approaches em-

ploy reconstruction techniques or information-theoretic concepts such as entropy and 

Kolmogorov complexity [22, 23]. Some solutions focus on individual cases (data 

points) [e.g. 16, 17, 25], whereas others aim to detect groups or substructures [e.g. 8, 

23]. Discretization of continuous (numerical) attributes is a technique that is used in 

many of the AD approaches, e.g. for improving accuracy and time performance of the 

algorithms [24, 25, 26, 27, 28].  

SECODA is an algorithm for unsupervised non-parametric anomaly detection in 

datasets with continuous and categorical attributes [25, 29]. It bears similarities with, 

i.a., density-based AD solutions and ensembles. SECODA employs discretization of 

numerical attributes, exponentially increasing weights and discretization cut points, as 

well as a pruning heuristic to detect anomalies with an optimal number of iterations. 

Its rich form of discretization makes it well-suited for this paper’s experimentation. 

This study investigates the effect of the discretization method on the unsupervised 

detection of each of the six anomaly types acknowledged in a recent typology of data 

anomalies [3]. The results not only demonstrate that SECODA, using its standard 

settings, is able to detect all six anomaly types, but also that different discretization 

methods clearly favor the discovery of different anomaly types. Moreover, the main 

results, as summarized in Table 2, also hold for other techniques using discretization. 

This paper proceeds as follows. Section 2 presents the necessary theoretical back-

ground. Section 3 discusses the experiments that have been conducted with several 

synthetic and real-world datasets. Section 4 is for conclusions.  

2 Theoretical Foundations 

This section presents a summary of the typology of anomalies, a brief overview of 

discretization theory, and an explanation of the SECODA algorithm.  

 

2.1 Typology of Anomalies 

The typology of data anomalies presented in [3] offers a theoretical and tangible un-

derstanding of the nature of different types of anomalies, assists researchers with 

systematically evaluating the functional capabilities of anomaly detection algorithms, 

and as a framework aids in analyzing the nature of data, patterns and anomalies. The 

typology uses two fundamental and data-oriented dimensions:  

 Types of Data: The data types of the attributes that are involved in the anoma-

lous character of a deviant case. These can be continuous (numerical, e.g. 

height or temperature), categorical (code- or class-based, e.g. color or blood 

type) or mixed (when both types are involved).  

 Cardinality of Relationship: The way in which the various attributes relate to 

each other when describing anomalous behavior. When no relationship be-

tween the variables exists to which the anomalous character of the deviant case 

can be attributed, the relationship is said to be univariate. It follows that the 

analysis can assume independence between the attributes. On the other hand, 
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when the deviant behavior of the anomaly lies in the relationships between its 

variables, i.e. in the combination of its attribute values, then the relationship is 

said to be multivariate. This means the variables need to be analyzed jointly, 

not separately, in order to account for the relationships between them.  

 

 
Fig. 1. The typology of anomalies 

 

These two dimensions naturally and objectively yield six basic types of anomalies. 

Although the typology can be used to describe aggregate anomalies (a group of cases 

that deviates), the focus in this study is on individual data points.  

 Type I - Extreme value anomaly: A case with an extremely high, low or otherwise 

rare (e.g. isolated intermediate) value for one or several individual numerical at-

tributes. This type of outlier is typically considered in traditional univariate statis-

tics, e.g. by using a measure of central tendency plus or minus 3 times the standard 

deviation or the median absolute deviation. Examples of Type I anomalies are the 

Ia and Ib cases in Fig. 2.A (note: the reader might want to zoom in on a digital 

screen to see colors, patterns and data points in detail).  

 Type II - Rare class anomaly: A case with an uncommon class value for one or 

several individual categorical variables. Such values can be few and far between 

or truly unique (i.e. occur only once). An example of a Type II anomaly is the IIa 

case in Fig. 2.B, which is the only square shape in the set. 

 Type III - Simple mixed data anomaly: A case that is both a Type I and Type II 

anomaly, i.e. with at least one extreme value and one rare class. This anomaly type 

deviates with regard to multiple data types. This requires deviant values for at 

least two attributes, each anomalous in their own right. These can thus be analyzed 

separately. Analyzing the attributes jointly is not necessary because, like Type I 

and II anomalies, the case is not deviant in terms of a combination of values. An 

example of a Type III anomaly is the IIIa case in Fig. 2.B, a unique shape at an 

extreme numerical position. 
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 Type IV - Multidimensional numerical anomaly: A case that does not conform to 

the general patterns when the relationship between multiple continuous attributes 

is taken into account, but that does not have extreme or isolated values for any of 

the individual attributes that partake in this relationship. The anomalous nature of 

a case of this type lies in the deviant or rare combination of its continuous attribute 

values. Detection therefore requires several numerical attributes that are analyzed 

jointly. An example of a Type IV anomaly is the IVa case in Fig. 2.A. 

 Type V - Multidimensional rare class anomaly: A case with a rare combination of 

class values. A minimum of two categorical attributes needs to be analyzed jointly 

to discover a multidimensional rare class anomaly. An example is this curious 

combination of values from three attributes used to describe dogs: ‘MALE’, ‘PUPPY’ 

and ‘PREGNANT’. Another example is the Va case in Fig. 2.B, which is the only red 

circle in the set. 

 Type VI - Multidimensional mixed data anomaly: A case with a deviant relation-

ship between its continuous and categorical attributes. The anomalous case gener-

ally has a categorical value or a combination of categorical values that in itself is 

not rare in the dataset as a whole, but is only rare in its neighborhood (numerical 

area) or local pattern. As with Type IV and V anomalies, multiple attributes need 

to be jointly taken into account to identify them. In fact, multiple datatypes need to 

be used, as a Type VI anomaly per definition requires both numerical and categor-

ical data. Examples of Type VI anomalies are the VIa cases in Fig. 4.A, seemingly 

misplaced green cases amongst an overwhelmingly red data cloud.  

 

 

 
 

Fig. 2. (A) Mountain dataset with 3 numerical attributes; (B) ClassCircle dataset  

with two numerical attributes and two categorical attributes (color and shape) 
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The value of this typology lies not only in providing both a theoretical and tangible 

understanding of the types of anomalies one can encounter in datasets, but also in its 

ability to evaluate which type of anomalies can be detected by a given algorithm – or 

a given configuration of an algorithm. See [3, 25] for more examples of anomalies.  

 

2.2 Discretization 

The task of discretization refers to partitioning a continuous attribute into a limited 

number of sub-ranges (intervals) in order to obtain a categorical data type [27, 28, 

30]. Discretization is used regularly in artificial intelligence, as numerous machine 

learning and data mining algorithms require a categorical feature space [7, 27, 28, 30]. 

Examples of algorithms where discretization plays a crucial role are decision trees, 

random forests, Bayesian networks, naive Bayes and rule-learners. Discretization also 

plays an important role in anomaly detection [cf. 24, 25, 26]. Apart from the fact that 

techniques may require categorical data, discretization has been shown to improve the 

accuracy, time performance and understandability of analysis methods [27, 28, 30].  

 The term arity refers to the resulting number of intervals or partitions. Several 

methods allow to set this number b before running the discretization process. The 

range of a continuous variable is divided into intervals by b – 1 cut points. An indi-

vidual cut point or split point is a real value at the position where an interval boundary 

is located, dividing the range into two intervals.  

 Discretization methods can be supervised, taking into account the training set’s 

class label that ultimately needs to be predicted, or unsupervised, thus not taking into 

account a dependent variable. Two main unsupervised discretization methods exist, 

both of them often referred to as binning [7, 26, 27, 31]. Equiwidth discretization 

refers to equal interval binning. This method divides the range of an attribute’s ob-

served continuous values into b bins of the same value interval. The second method is 

equidepth discretization, which refers to equal frequency binning and divides a con-

tinuous attribute into b bins that each contain the same number of cases. In both 

methods b is provided as input to the discretization function. The two discretization 

techniques have been used for anomaly detection [e.g. 24, 25, 26]. 

Discretization methods can be characterized in several ways [28, 30, 31]. Binning 

techniques can be global or local, albeit both unsupervised methods employed in this 

study are global. This means that they use the entire value space for partitioning, in-

dependently of the characteristics of local regions. Methods can also be direct or in-

cremental, with the latter referring to techniques that pass through the data several 

times to arrive at an optimal discretized attribute. The equiwidth and equidepth meth-

ods are direct, meaning that they require only one pass. Finally, both binning methods 

discretize the data for each attribute separately, so these binning solutions do not take 

into account any relationships between the variables.  

 

2.3 SECODA 

SECODA, an abbreviation for segmentation- and combination-based detection of 

anomalies, is a general-purpose algorithm for unsupervised anomaly detection in da-

tasets with mixed data [25, 29]. The algorithm is non-parametric in nature and there-
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fore does not assume any specific data distribution. It investigates the joint density 

distribution to discover high-density patterns and low-frequency deviations in the 

dataset, taking into account any relationship that may exist between its attributes. To 

this end, SECODA iteratively searches the dataset until the cases have been scruti-

nized with sufficient detail. 

SECODA is guaranteed to identify cases with unique or very rare combinations of 

attribute values. The algorithm uses the histogram-based approach to assess the densi-

ty of each combination (or “constellation”) of categorical and continuous attribute 

values. The concatenation trick, which combines categorical and discretized continu-

ous attributes into a new constellation feature, is used to analyze different data types 

in a joint fashion. In conjunction with recursive binning this captures complex rela-

tionships between attributes. In subsequent iterations SECODA uses increasingly 

narrow discretization intervals in order to add more detail and precision to the analy-

sis and identify more subtle anomalies. The distance between data points in numerical 

space is implicitly accounted for by this iterative binning process. A pruning heuristic 

as well as exponentially increasing weights and arity are employed to speed up the 

analysis. The increasing arity (providing more localized details) and weights (allow-

ing for optimally combining the results obtained from different iterations) also help to 

avoid discretization error and detection bias.  

Note that recursive discretization is not employed by SECODA to find a single, op-

timal value for the arity parameter b, because it exploits the information from all bin-

ning iterations. Put differently, SECODA is an algorithm that recursively collects and 

uses the information from a discretization method that is itself applied in each itera-

tion in a direct (instead of incremental) manner. The input parameter b is thus not 

provided by the user, but repeatedly by SECODA until a stopping criterion is reached.  

The SECODA approach has several favorable properties. It is a relatively simple 

algorithm that does not require expensive point-to-point calculations. Only basic data 

operations are used, making it suitable for sets with large numbers of rows as well as 

for in-database analytics and machines with relatively little memory. The algorithm 

scales linearly with dataset size, and for extremely large sets a longer computation 

time is hardly required because additional iterations would not yield a meaningful 

gain in precision. The technique can also easily be implemented for parallel pro-

cessing architectures. All kinds of relationships between attributes are taken into ac-

count, such as (non)linear associations, interactions, collinearity and relations be-

tween variables of different data types. Although SECODA is vulnerable to the curse 

of dimensionality, general techniques such as feature bagging and random projection 

can be applied to deal with this. Missing values are automatically handled as one 

would functionally desire in an AD context, with only very rare missing values being 

considered anomalous. Finally, the pruning heuristic is a self-regulating mechanism 

during runtime, dynamically deciding how many cases to discard. After converging 

the algorithm returns a score vector so that each case gets assigned a degree of 

anomalousness, with lower scores representing more deviant occurrences.  

SECODA has been evaluated in an academic context and has been used in practice 

as well to discover anomalies in the Polis Administration, an official register main-

taining masterdata regarding the salaries, social security benefits, pensions and in-



7 

come relationships of people working or living in the Netherlands [25, 37]. The eval-

uation involved applying the algorithm to various synthetic and real-world datasets. 

Using ROC and PRC curves, as well as AUC and partial AUC metrics, it was demon-

strated that this AD solution is able to successfully detect a wide variety of anomaly 

types. It has also been shown that the algorithm has low memory requirements and 

scales linearly with dataset size. SECODA has not been tested on all six types of 

anomalies, as the full typology was published later. Section 3 will demonstrate that 

the algorithm is indeed able to detect all types, and is therefore well-suited for exper-

iments studying the effects of discretization on the detection of these types.  

SECODA can be downloaded for free as a package for the R environment (see 

Remarks). The implementation offers various options, such as the minimum and max-

imum amount of iterations, a pruning parameter, and the iteration after which the 

heuristics should start to run. These options generally have trivial consequences and 

are mainly intended to tweak the amount of analysis detail and running time, so the 

standard settings normally suffice. This is desirable because algorithms for data min-

ing are ideally parameter-free in order to discover the true patterns and deviations in a 

simple and objective fashion [23, cf. 18]. On the other hand, however, it is widely 

acknowledged that the world – and therefore the datasets that it produces – is ex-

tremely complex, and that no single algorithm or algorithm setting is thus able to 

perform excellent in all situations [18, 32, 33, 34]. This also holds in the context of 

anomaly detection [35, 36] and discretization [30]. Section 3 therefore investigates the 

effect of the binning method, another parameter that the analyst can set before run-

ning SECODA, on detecting the different types of anomalies defined in section 2.1.  

 

 

 
 

Fig. 3. (A) The large black dots represent the top 45 anomalies of the Mountain set resulting 

from equiwidth binning; (B) The top 45 anomalies from equidepth binning 
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3 Empirical Experiments 

3.1 Research Design and Datasets 

This study uses several synthetic and real-world datasets to investigate whether and 

how the discretization method affects the detection of the various anomaly types. The 

simulated datasets are labelled, which makes them suitable for verifying whether AD 

algorithms can readily detect the anomalies. The real-world dataset, drawn randomly 

from the aforementioned Polis Administration and anonymized subsequently, is unla-

beled. The sets are described in Table 1 and are visually depicted in Figures 2 to 5. 

See the Remarks for download options. The R environment 3.4.3, RStudio 1.1.383, 

SECODA 0.5.3 and rgl 0.98.22 were used to generate the synthetic datasets and con-

duct the experiments. SECODA’s heuristics for speeding up the analysis (e.g. prun-

ing, which in a standard configuration starts being applied after 10 iterations) were 

not used in order to ensure maximum precision of the results.  

Table 1. Datasets used for experiments 

Dataset Nature Datatypes # Cases Types of anomaly 

ClassCircle Simulated 2 num, 2 categ  422 Type II, III, V 

Mountain Simulated 3 numerical  943 Type I, IV 

NoisyMix Simulated 3 num, 2 categ  3867 Type II, VI 

Sword Simulated 2 num, 1 categ  7024 Type II, III, VI 

Helix Simulated 3 num, 1 categ  1410 Type I, IV, VI 

Polis dataset Real-world 3 num, 1 categ 304726 Type I, II, IV, VI 

 

Although the multivariate anomaly types can be used to describe aggregate anomalies 

– i.e. a group of related cases that deviates as a whole [3] – this study will focus solely 

on deviants that are atomic, single cases in independent data. The reason for this is 

that detecting grouped anomalies generally requires special-purpose approaches.  

 

3.2 Results and Discussion 

In the first series of experiments the five simulated datasets were used to study 

whether SECODA was able to identify the six types of anomalies presented in section 

2.1. Note that [25] was not able to evaluate the algorithm on all six types because the 

full typology of [3] had not been developed at the time. The standard configuration of 

SECODA employs equiwidth binning and was indeed able to detect all types of 

anomalies. The subsequent series of experiments involved running SECODA with the 

non-standard equidepth setting to investigate what types of anomalies were identified 

in this fashion and how this compared to equiwidth AD.  

With regard to a univariate analysis of a single numerical attribute, it is evident 

that the equiwidth setting is the preferred and basically only sensible option. This 

setting is able to detect isolated Type I cases, both extremely large or small values and 

rare intermediate data points. The equidepth setting, even though many discretization 



9 

iterations were generally required before converging, was not able to detect these 

obvious anomalies and resulted in all cases getting a very high and non-discriminating 

score. This can be easily explained by the nature of equidepth discretization, since 

every bin gets assigned the same number of cases (although slight differences in fre-

quency might occur if the set cannot be split evenly). SECODA’s repeated binning 

with increasingly narrow intervals does not change this fact.  

For the Mountain set with multiple numerical attributes the equiwidth setting was 

also found to be the superior choice, as it was readily able to detect the 3 labelled 

Type I and IV anomalies. Furthermore, the other cases with a low score were all rela-

tively isolated cases at the boundary of the data cloud. With the equidepth setting only 

1 of the 3 labelled anomalies were detected (the Type IV case of Fig. 2.A). In addi-

tion, most of the other low-score equidepth results were positioned in the middle of 

the data cloud, seemingly without a good reason why these should be considered 

more anomalous than other data points. The difference between the two binning 

methods is illustrated by Fig. 3.A on the left depicting the 45 most anomalous cases 

found by equiwidth binning, which are mostly outlying and include the 3 labelled 

anomalies, and 3.B showing the 45 lowest-score cases, which are mainly positioned in 

the high-density center of the data cloud. (Note that the aforementioned 3 true anoma-

lies, which can be clearly seen in Fig. 2.A, are not visible from this angle.) 

When disregarding the categorical attributes in the Helix and NoisyMix sets, the 

results are very similar. Type IV anomalies can be detected relatively well by equi-

depth binning, albeit with more false positives. Type I deviants are not detected, alt-

hough they may be found if they have extreme values for multiple numerical attrib-

utes and thus are anomalous with regard to the combination of these values.  

In short, the equidepth setting is most certainly not suitable for AD analysis of uni-

variate numerical vectors (hosting Type I cases) and is reasonably equipped for deal-

ing with multivariate numerical sets (hosting Type IV cases). Equiwidth binning 

yields more meaningful results as it directly targets the numerically isolated cases.  

When analyzing a dataset containing only categorical attributes, the discretization 

method does not in any way influence the results. This is entirely to be expected, as 

discretization of continuous data should not affect a purely categorical analysis. The 

binning method provided by the analyst as an input parameter to the algorithm is 

simply irrelevant in this situation. Tests on several datasets indeed confirm this when 

running the algorithm with the two settings. In sets with mixed data both numerical 

and categorical attributes are present, and the returned scores of the two discretization 

methods can be expected to be different. However, the effect depends on the type of 

anomaly and the distribution of the data. Truly unique Type II or III univariate class-

based anomalies will be recognized as unique, regardless of the binning method, and 

get assigned the lowest score possible. The same holds for unique combinations of 

classes, i.e. Type V cases. Experiments with the datasets that contain categorical data 

confirmed this as well, with SECODA returning the lowest anomaly score for such 

unique cases with both methods. However, when the Type II, III or V anomalies are 

rare in the dataset (rather than truly unique), the numerical data may influence the 

score. This can be expected because the rare cases can be close or distant neighbors 

and also compete with e.g. very isolated Type I and VI deviants. However, regardless 
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of the binning method one would still expect these anomalies to be identified, return-

ing relatively low anomaly scores for such cases. This is confirmed as well, although 

with some interesting differences between the two discretization methods (see below). 

 

 
 

Fig. 4. From top to bottom: (A) The top 50 anomalies (black circles) of the Sword set from 

equiwidth binning; The (B) top 5 and (C) top 50 anomalies from equidepth binning 

 

The binning method possibly has the most interesting impact on the detection of 

Type VI anomalies. These do not feature truly (globally) unique classes, because 

these classes are common in other areas of the numerical space. The detection of these 

local anomalies may therefore very well be affected by the discretization technique, 

an expectation that was confirmed by the experiments. In several datasets it was ob-

served that equidepth binning often yields superior results when the goal is to detect 

Type VI anomalies. This is illustrated by Fig. 4.A at the top, where it can clearly be 

seen that the equiwidth analysis results in a variety of anomalies. However, due to the 

nature of the Sword dataset, which contains many numerically isolated cases, most of 

the top 50 anomalies are Type I and IV outliers. The Type II and III anomalies are 

 

 

  VIa 

VIb 

ROC AUC (full):  88.7359910% 
ROC pAUC (100 - 90%):  81.8234763% 
ROC pAUC (100 - 95%):  78.5991345% 
ROC pAUC (100 - 99%):  62.1481883% 
 

ROC AUC (full):  99.6415567% 
ROC pAUC (100 - 90%):  98.1134564% 
ROC pAUC (100 - 95%):  96.3236587% 
ROC pAUC (100 - 99%):  85.7432526% 
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also detected, but the Type VI anomalies less so. The equidepth analysis presented in 

Fig. 4.B and 4.C results in quite different cases being denoted as most extreme anom-

alies. It can be seen that the top 5 cases are mostly Type VI anomalies, which are 

located in dense (rather than sparsely populated) regions of the space. The Type II 

case at height 805 and the Type III case at the far right are truly unique classes due to 

their color and are therefore regarded as highly anomalous by both binning methods. 

Rare (as opposed to truly unique) Type II and V anomalies, which can but do not have 

to be isolated, are also detected more readily with equidepth binning when not located 

in low-density areas. Equiwidth binning will acknowledge a handful of neighboring 

rare classes (i.e. a very small ‘cluster’) as moderately anomalous, regardless of 

whether they lie inside or outside the data cloud. This is due to the fact that they are 

not truly unique. Equidepth binning, on the other hand, will recognize them as highly 

anomalous if they lie within the cloud, but not if they lie outside it (see the five de-

tected purple cases in the middle of Fig. 4.C). Fig. 4 also shows the ROC AUC and 3 

specificity partial AUCs for the specific task of detecting the in-cloud high-density 

anomalies (not the numerically isolated cases). In short, equiwidth discretization is 

well-equipped for detecting all anomaly types, including isolated occurrences. Equi-

depth binning, although more vulnerable to yielding false positives, is relatively well-

equipped for detecting Type VI and in-cloud Type II and V anomalies.  

 To further investigate these findings, SECODA was used to analyze a sample from 

the aforementioned real-world Polis dataset. A similar effect was observed here. Fig. 

5.A on the left illustrates the results of AD with equiwidth binning, which yielded a 

wide variety of anomalies, including many isolated cases. Fig 5.B shows the results of 

AD with equidepth discretization, with the most extreme anomalies found to be posi-

tioned in the center’s high-density area. Both figures also have a zoomed-in view at 

the bottom, where the difference can be seen in more detail for each binning method. 

 At this point it is valuable to discuss the reasons why equiwidth and equidepth 

discretization yield different results in an AD context. In general, equiwidth binning 

performs better in terms of overall functional performance, i.e. the capability to detect 

a wide variety of meaningful anomalies. The reason for this is that equiwidth binning 

(or at least a single binning run with only one value for b) uses fixed value intervals, 

resulting in isolated Type I, III and IV cases to be placed in near empty bins. This also 

holds when SECODA repeatedly discretizes the continuous attributes using many 

values for b during the analysis, thus creating few bins in early iterations and many 

bins in later iterations (the recursive binning ensures that more distant anomalies get 

lower scores). It is known from the literature that data analysis with equiwidth bin-

ning is sensitive to outliers, a property that is usually seen as a disadvantage [7, 27, 

28, 31]. However, in the context of anomaly detection this sensitivity can be exploit-

ed, resulting in relatively easy detection of sparse data by isolating them in separate 

bins. Equidepth binning, on the other hand, fails this detection of isolated cases, since 

the value ranges of the bins are stretched so as to fill them with an equal amount of 

data points. For example, in a typical Gaussian distribution the discretization intervals 

at the tails will be very wide because these regions are sparsely populated and the bins 

have to be filled with a given amount of cases. Moving inwards to the mean of the 

Gaussian distribution the bins will get narrower. The consequence is that univariately 
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numerically isolated cases are not detected, as the focus is then on the categorical 

abnormality and – in case of multivariate analysis – on the combination of values 

from multiple attributes. Compared to equiwidth binning this results in (univariate) 

low-density cases getting assigned relatively high SECODA scores and non-isolated 

deviant cases relatively low scores.  

 

 
 

Fig. 5. (A) The large dots represent the 40 most extreme anomalies of the Polis set detected by 

equiwidth binning (the bottom is zoomed-in); (B) The top 40 anomalies from equidepth binning 

 

Moreover, in the narrow intervals used for univariate high-density areas, the class 

values of Type II, V or VI cases will be quickly (i.e. with a relatively low value for b) 

unique in its bin, even if the case is not located very distantly from the cases with a 

similar color. In Fig. 4, for example, the red Type VI anomalies somewhat left from 

value 20 are not located very far from the large amount of normal red cases that can 

be seen from value 20 and up. With equidepth binning the discretization intervals in 

that region of the variable plotted on the horizontal axis will be very narrow, resulting 

in earlier separation and therefore detection of these anomalies than would be the case 

with equiwidth binning. 

It was mentioned above that equidepth binning recognizes several neighboring rare 

classes (referred to as the very small ‘cluster’) as very anomalous if they lie within the 

rest of the data cloud, but not if they lie isolated. This can be explained by the same 

reason: within the dense parts of the data cloud the discretized value intervals are 

narrower, so rare classes are recognized with a lower arity b than with equiwidth dis-

cretization. This means they get detected earlier and are denoted as more anomalous. 
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Equidepth binning in an AD context thus scrutinizes the dense regions of the dis-

tribution in more detail (if these can be detected univariately). This method of dis-

cretization disregards tail and intermediate data points that are isolated in numerical 

space. Instead, when a multivariate analysis is conducted, the focus will be on un-

common class values and rare combinations of (continuous and categorical) attribute 

values. Equidepth discretization thus ignores univariately isolated cases and, more so 

than equiwidth analysis, has a propensity to detect anomalies that lie amongst other 

data points. It favors detecting cases that w.r.t. numerical attributes are located in 

univariate high-density regions. The discretization process, which handles individual 

attributes, will place cases that are located in univariate high-density regions in very 

thin univariate bins, i.e. in narrow value intervals. If these cases are also located in the 

univariate high-density ranges of other attributes, the multidimensional intersection 

will thus yield relatively low-density, sparsely populated constellations. In a purely 

numerical dataset this property will denote as anomalies both Type IV cases (true 

deviants) and points in or around the densest areas of the data cloud (often false posi-

tives, but sometimes interesting subtle deviants). This argument holds both for one-

time discretization and the iterative binning of SECODA. For mixed data this works 

well for discovering Type VI anomalies, as well as for Type II and V cases located in 

high-density areas.  

To succinctly state why equidepth binning can discriminate between normal and 

anomalous cases: It is not because bins get scarcely filled with isolated points, be-

cause all bins are filled with an equal amount of cases. Rather, it is because categori-

cal data with an unbalanced class distribution is present or because the combination 

of numerical and/or categorical values yields infrequent occurrences. Equiwidth bin-

ning, on the other hand, utilizes all these three discriminating properties.  

Table 2. Impact of discretization method on detection of anomaly types 

Type Impact? Useful? Explanation 

I Y N ED cannot discriminate between the univariate numerical 

values and is intrinsically not equipped to detect this type. 

II N/Y Y ED is identical to EW when analyzing a single categorical 

attribute. It can be more useful than EW if the goal is to 

detect (non-unique) rare Type II anomalies in numerically 

high-density regions in an analysis of mixed data.  

III Y Y ED detects truly unique classes equally well as EW, but the 

latter shows slightly better performance with rare classes 

(because EW will exploit their isolated position better).  

IV Y Y ED detects many Type IV cases, but also yields more false 

positives and false negatives, and is thus not optimally 

equipped to detect this type. ED can sometimes detect more 

subtle Type IV cases at dense areas than EW can.  

V N/Y Y ED is identical to EW in a set with merely categorical data. 

It can be more useful than EW if the goal is to detect (non-

unique) rare Type V anomalies in numerically high-density 

regions in an analysis of mixed data. 

VI Y Y ED tends to favor the detection of Type VI anomalies and 

can be more useful than EW if this is indeed the goal.  
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Table 2 summarizes the findings for each anomaly type. The Impact? column re-

fers to whether there exists a direct impact of using equidepth (ED) instead of 

equiwidth (EW) binning for the anomaly type. The Useful? column denotes whether 

equidepth binning can be useful in some situations for detecting the given type.  

These main conclusions also hold for single, non-iterative binning operations, e.g. 

using only 7 intervals to discretize each continuous attribute. However, the recursive 

binning of SECODA accounts for the distance between data points and is thus able to 

calculate the degree of deviation. A single discretization run, on the other hand, re-

quires the analyst to pick an arbitrary number of bins and cannot return information 

on the degree of anomalousness as a result of this rather crude form of binning.  

As a final note, equidepth discretization can be useful in practical situations, as it is 

known that in some settings it is valuable to detect non-isolated and relatively subtle 

deviations rather than cases that are extreme and rare on all accounts [cf. 38, 39].  

4 Conclusion 

The results demonstrate that discretization, including its employment in the standard 

SECODA algorithm, can be used to detect all six types of anomalies. However, the 

equiwidth and equidepth discretization techniques yield notably different results and 

favor the discovery of certain anomaly types. Equiwidth and equidepth SECODA can 

therefore best be seen as two different algorithms. Equiwidth SECODA is a general-

purpose algorithm, whereas the equidepth version is a special-purpose technique fo-

cusing on specific anomaly types. The main conclusions of Table 2 also hold for 

techniques that perform discretization only once, although the results hereof will be 

less precise and will not account for the distance between data points.  

In general, if the analyst does not know beforehand in what type of anomaly he or 

she is interested, then equiwidth discretization is the preferred option. This will con-

duct a general-purpose anomaly detection and ensure that all anomaly types will be 

detected. If on the other hand the focus is on identifying anomalies that are not locat-

ed in extreme or isolated regions of the numerical space, equidepth discretization 

should be used. The equidepth binning option favors the detection of Type VI anoma-

lies as well as Type II and V cases that are found inside data clouds rather than in 

sparsely populated regions.  

 
Remarks. A SECODA implementation, as well as various datasets and the code to analyze 

them in R can be downloaded from www.foorthuis.nl (see “SECODA resources for R”).  
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